
Abstract—Abor iginal languages all over the wor ld are
threatened with extinction. Abor iginal youth from Canada to
New Zealand are not becoming fluent in their language and
culture, and the number of fluent speakers is declining severely.
The use of computer games in general, and por table platforms in
par ticular , is proposed here as a par tial solution to the problem.

Index Terms—audio, computer games, language learning,
abor iginal language preservation, audio display.

1. INTRODUCTION

N 2004, a small group of researchers in the
Digital Media Laboratory at the University of
Calgary had the idea to create a computer game

for aboriginal players in Canada and the US. We
saw that there were no significant characters of
aboriginal heritage or appearance in current games,
although it was known anecdotally that aboriginals
played computer games of generally the same sort
and in the same amounts as other North Americans.

 As our design work progressed, a few interesting
ideas developed. First was the thought that a
computer game can be used like other multimedia
objects on a computer: to record and play back real
or synthetic scenes in real or imaginary worlds. A
computer game that implemented an aboriginal
world according to their actual oral traditions would
be not only unique, but could be thought of as an
encapsulation of their culture, approximate though
it may be. It could be used to preserve the culture
and teach it to others, especially the children born
into the culture[2,3,5,8,9].

One of the most important aspects of any native
culture that needs to be taught is the native language
itself. Many aboriginal languages are endangered,
not just in North America but all over the world. For
this reason we decided to focus our attention
initially on the language issue in particular.

The University of Calgary has a preexisting

relationship with Red Crow College near the town
of Standoff in southern Alberta. The college is on a
reserve, and the Blackfoot scholars who work there
have an interest in the preservation of their language
and culture. It is for this reason that the language
and culture that we propose to use as a basis for our
prototype game project are those of the Blackfoot.

There is no reason why this has to be the only
language, though, and if the design is carefully done
then the same engine can be used to create language
games for many distinct groups. There seems to be
no specific design methodology for multicultural
software of this sort, especially when combined
with the artistic and educational aspects that we are
encountering, so in a real sense the basic concepts
of multicultural software are being devised as we go
along.

Preliminary ethnological data from the area
indicates that the young band members (under 18
years old) do indeed play video games, and use
Playstations and GameCubes in a similar manner
and to a similar degree as non-natives in the same
age group. A survey is now being administered to
gather details on these matters, and these data will
be published.

The game we are building is called I 'powahsin,
the Blackfoot word meaning ‘speak’ .

2. THE GAME DESIGN

Although the essential design and programming
of the system began in June of 2005, this was done
in advance of story details to provide a basic engine
for the game. The narrative was missing, and only a
shell was in place. The idea underlying the game is
that of a quest, a common theme in both Blackfoot
stories and in video games. The player will have a
main goal and a set of subgoals, but will not know

I

Technical Aspects of a System for Teaching
Aboriginal Languages Using a Game Boy

J. R. Parker
University of Calgary

Digital Media Laboratory
 jparker@ucalgary.ca

Ryan Heavy Head
Kainai Studies Department

Mi'kaistoo Community College
Blood Reserve

K. Becker
University of Calgary

Graduate Division of Educational
Research

how to achieve the goal at the outset. Instructions
will be given to the player in the Blackfoot language
at specified points along a predefined route through
the game world. These instructions are given in
spoken Blackfoot. If the player does not
comprehend the instructions, then the next sub-goal
in the sequence can’ t be achieved. The game will
detect these events and prompt the player with
corrections, and will deduct points for lack of
comprehension. The game AI will also offer to
translate the instructions for a fee (in points or game
experience). Success in the task indicates language
understanding, and gains points for the player.

So, to make the scheme quite clear: instructions
for the player to follow are given in the language to
be learned, and a translation can be requested,
which costs points. Successfully following the
instructions implies language understanding at some
level, and game points are awarded. Failing to
follow the instructions costs points, and forces the
game to accommodate the new situation by either
starting over or creating a new set of instructions
using the new situation.

The game AI system attempts to determine
which specific words and phrases have been used
before, and how often. It also keeps track of
translations, and attempts to classify words as
having been learned by the player or not, and as
being difficult for this player or easy. Penalties
become greater with each actual translation, and
learning difficult words is worth more points than
learning easy ones.

Once the story was completely written, the script
was created, and all of the spoken sentences needed
for the game could be recorded and saved in audio
files. Each word in each file is kept in a special
internal index; each time a file is played (I.E. each
time a sentence is spoken by a game character) all of
the words in that sentence have their corresponding
usage count incremented. This usage count, or
number of times a particular word has been heard by
the player, is thus easy to access, and can be used to
determine penalties, rewards, and overall
performance.

2.1. The Basic Narrative

On June 29, 2005, the principals of this project
met at Red Crow College. The goal was to
determine the narrative that would be used as a basis

for the game play. Although there are many stories
from the Blackfoot tradition that could be used, we
decided on an age range of 10-14 as a target, and
this affected the choice of story. It was decided to
create a war story in a traditional fashion based on
existing stories of the type. Use of any particular
war story would have defined a particular course of
action, and would have thus predetermined the play
possibilities. Narrative is the enemy of interaction.

 Culling a number of themes and strategic details
common to classical Blackfoot war tales, an original
narrative was designed. The story begins with an
animated video. Maanikapi (bachelor) is a young
man in love with Iikitsiwaakii (beautiful-woman),
the daughter of Omahkínaa (old-man), who is a
powerful tribal leader. In hopes of marrying his
sweetheart, Maanikapi sends his only horse to
Omahkínaa as a gift, along with an emissary who
imparts his amorous request. Unfortunately, though,
the chief is not impressed with the suitor’s offering.
Concerned about his daughter’s future welfare,
Omahkínaa returns the horse to Maanikapi, along
with the message that Iikitsiwaakii will not marry a
poor man. Given these circumstances, Maanikapi is
encouraged by Saahkinaa (young-man), his best
friend, to travel southward with him on a horse raid
against the Crow. If they are successful, and return
with more horses, Maanikapi might then be granted
permission to marry. The two agree on this plan,
and go to seek the guidance of Naatoyiitapi
(balanced-life), a holy man, who makes a
sweatlodge for them, and gives them instructions on
how to accomplish their goal.

It is at this point where the animated video
concludes and the game proper begins. The first
stage requires the player, Maanikapi, to visit
relatives around their camp in request of a number
of supplies and weapons that Naatoyiitapi had
instructed him to bring. Each such request will
require the player to select language that fits the
kinship relation he has with the addressee, and to
respond appropriately to any remarks or questions
they might make. If approached properly,
Maanikapi may receive special charms from some
of his relatives, along with knowledge that will help
him on his quest. Once all the items have been
secured from around their village, Maanikapi and
Saahkinaa can embark on their journey.

Moving at night, and camping during the day, the

two head south following a prescribed route. All
along the way, they face dangers and strategic
challenges that Naatoyiitapi had counseled them of.
The advice of Naatoyiitapi, as well as any words of
wisdom received from Maanikapi’s relatives, can be
replayed like flashback memories when the partners
are in sight of given mnemonic signs. Maanikapi
will also be allowed to ask Saahkinaa questions
when in doubt about how to negotiate a particular
challenge. Chance encounters with enemy war
parties or grizzly bears, the inability to
communicate properly with other Blackfoot
travellers, failure to secure ample food and water,
straying off the charted course, etc., all can lead to
disaster for Maanikapi and Saahkinaa. The classic
Blackfoot war stories tell of many strategies that
one must use while travelling. An encounter with
buffalo in the dark of night can startle herds into
stampeding, a danger unto itself that may also signal
one’s location to nearby enemies. In the daytime,
magpies, hawks, and waterfowl might give away the
player’s position, as will an unconcealed fire at
night, or smoke during the daytime. Maanikapi will
be challenged to read and respond to his
environment accurately in order to arrive safely,
some nights later, at the Crow encampment.

Once having made it to the enemy village,
Maanikapi and Saahkinaa will once more be
challenged to use the strategies they’ve been
instructed in. Their goal is to hide-out in the
daytime, determine an escape plan, and then stalk
toward the encampment on a dark night and steal as
many horses as they can without being detected by
the enemy. There will be horses at pasture, guarded
at all times by a couple of young boys. But the best
and most prestigious horses will be staked beside
the lodges in camp, with a tether that attaches to
their sleeping owners’ wrists. Maanikapi can
attempt to steal any horse he wants to, but he’d
better have carried a charm from his relatives if he
hopes to succeed at stealing one of the prized
buffalo runners in camp, and he’ ll have to be careful
not to encounter any of the Crow residents who
occasionally come and go from their lodges in the
night. If they have followed all of their instructions
properly, Maanikapi and Saahkinaa will escape
undetected. Otherwise, they will only be able to
steal so many horses (a number determined by the
the points they’d earned previously in the game)

before they are found-out and chased by the enemy.
Once discovered, Maanikapi will have to evade the
enemy and return to a hiding position that he and
Saahkinaa will have decided upon prior to their
engagements in the camp. Failure to execute the
agreed plan will lead to death, and force the player
to repeat the horse raid should he chose to try again.

After Maanikapi has successfully escaped from
the Crow camp with his stolen horses, a second
animated video will play the game’s conclusion,
showing the partners returning triumphantly to
camp with their horses. In the midst of celebration,
Maanikapi will once more offer his horses to
Omahkínaa. If he has brought back at least four
buffalo runners, or eight lesser horses, the offer will
be accepted, and Maanikapi will take Iikitsiwaakii
as his bride. Otherwise, the gift will be refused, and
Omahkínaa will again inform Maanikapi that his
daughter is not to marry a poor man, try again.

2.2. Artistic Assets

The long term goal of the project is to use art and
music that has been created by aboriginal artists.
This will provide the game with the special look and
feel that is needed for this new class of game.

Traditional music will be used, as well.
Drawings used in the prototype will be based on
native renderings, but the final game will use
drawing created by native artists trained specially
and engaged specifically for this task.

All of the voice clips are recorded in both
English and Blackfoot. The recordings are made at
the Red Crow site by native speakers, at full speed
and at half speed. The half speed versions are used
in a ‘primer’ version of the game, which is
otherwise identical to the full speed version.

3. THE GAME BOY AS A COMPUTER

There are a few issues that make this game a
challenge to implement, especially on a small
device like the Game Boy[4]. The main issues are
connected with audio, and with the artificial
intelligence system, specifically the analysis of
speech, recognizing and rewarding successful
learning, and penalizing errors and translations. The
Game Boy Advance is physically small, but is it
small in terms of its abilities as a computer?

The Game Boy Advance has at its heart a 16.7
MHz 16/32 bit ARM7TDMI processor[1]. This is a

RISC machine used in many cellular telephones; in
fact, over half of all embedded 32 bit CPUs in use
today are of this type. This device is as powerful as
many desktop computers available in 1993. The
display is a 2.9” LCD with a resolution of 240x160
pixels and a colour depth of 15 bits, or 32768
colours.

The graphics processor on the GBA is quite
sophisticated, having three tiled display modes and
three bitmap modes, along with 96Kb of dedicated
memory. The overall memory capability is 32 Mb
without bank switching to the Flash memory card,
and a typical Flash game memory card is 256 Mb or
less in size.

The most important thing to know about the
Game Boy Advance is that specialized hardware
activity is all memory mapped, so most control
activities are accomplished by reading and writing
specific memory locations. These locations are
often called registers, but aren’ t really.

3.1. Programming the GBA

Although it is possible to conceive of a C
compiler that would run on the GBA, this would be
impractical for many reasons. The usual situation
involves a cross compiler running on a PC creating
code for the GBA. Testing is done on the PC
through an emulator. Development systems of this
sort can be downloaded from many sites on the
Internet [11]. The specific system we used was
VisualHAM, although we had a second system in

place to make sure that the behaviour of our
software was same on both.

3.2. Playing Sound on the Game Boy

There are very few Game Boy games that
include speech as a feature. Why this is can be
guessed: the original Game Boy had no digital to
analog converter, so older games could not play
speech. On the Game Boy Advance (GBA), games
implement speech by playing back sound files, and
sound files tend to be very large. A Game Boy Flash
memory cartridge typically has no more than 256
Megabytes of storage for everything: code, art,
music, and other sounds. Sound effects and some
music can be implemented by using the build-in
sound synthesis features of the Game Boy (or the
PC sound card), but voice can’ t be done that way.
Unless voice is essential to the game, it tends to be
avoided.

The Game Boy Advance has two 8-bit Digital to
Analog Converters (DACs). Each one converts a
binary number into a voltage that is then sent to a
speaker or headphone. A sequence of binary
numbers sent to a speaker quickly enough can
reproduce any sound; this is basically how CD and
DVD players produce audio. Because there are two
DACs, the GBA can play sound in stereo, allowing
positional audio, among other things.

The traditional Game Boy sound system has four
audio channels, each one being a sound synthesis
module. The Sound 1 and Sound 2 channels are

Figure 2 – Internal audio flow in the GBA direct sound channel[10]. Two functions are

defined above, and when combined form a higher level one: play_sound (sound,

FIFO A DAC

Memory

// Set up DMA transfer of audio to FIFO A

*(bits32)0x40000C4 = 0xb6000000; // Enable, transfer words, start and repeat when FIFO is empty

saddr

(bits32)0x40000BC = (bits32)(saddr); // Source of DMA transfer

(bits32)0x40000C0 = (bits32) 0x040000A0; // Destination is FIFO A

DMA audio
data transfer

DMA_star t (saddr , FIFOA,WORD);

* (bits16*)0x4000100 = 0xffff - 2088; // Set the time interval

(bits16)0x4000102 = 0x0080; // Start the timer

Audio to
 DAC

DAC_star t (2088, FIFOA);

. . .

each a square wave generator, where channel 1 has
a variable duty cycle, frequency sweep and
envelope functions, and where the Sound 2 channel
has no frequency sweep. Channel 3 acts is a 4-bit
DAC that repeatedly plays a pattern of user
definable samples. Sound channel 4 produces noise
with an envelope function. These are used as a
synthesizer to create simple sound effects and
cartoon-type music.

The DAC channels, only found on the GBA and
above, are called the direct sound channels by GBA
programmers. This use of ‘direct sound’ is not at all
connected to the MicroSoft DirectX facility of the
same name. These can play pre-recorded and
digitized sounds, like actual music and voice. It is
the direct sound that permits the GBA to be used as
a language teaching tool.

3.3. A GBA Audio Engine

The idea behind the audio engine that we devised
was to create a general, simple interface that could
be used in the I 'powahsin project as well as in
future games without adding a significant degree of
overhead calculation to any game that used it.

Our (necessarily simple) audio engine is based
on two components: a pre-processing system (sound
pipeline) and an audio API. The pre-processor
accepts a WAV format audio file and creates a C-
style declaration of an array containing the 8-bit
sound samples. A Game Boy has no disk drive, of
course, and so sound files must be turned into
memory resident data. Our wavcnvrt utility does
this, and appends array declarations and
initiialzations to a specified ‘ .h’ file that will be
compiled with the game [6,7].

The remainder of the engine is a C library that
permits the control of the sound channels and
passing of data to them. Because the GBA sound
system is more primitive than that found on a
typical PC, controlling it is more involved. The
language project requires speech, which uses only
the direct sound channels, but controlling these is a
somewhat arcane process, typical of low-level
embedded systems. The basic operation of each
DAC is to play a single sample when instructed to;
thus, if we want to play a sound at a rate of 8000
samples per second, our program must send one
sample every 1/8000 seconds (0.125 milliseconds).
At 16.7 MHz processor speed this is one sample
every 2088 CPU cycles. We need a timer, and a way
to transfer data quickly.

The GBA uses a FIFO register to buffer the
sound data, which can be loaded using a traditional
direct memory access (DMA) scheme. There are
two FIFOs, one for each direct sound DAC, and the
process of playing a sound from memory is a two-
step sequence as shown in Figure 2.

We defined a function named DMA_start that
loads the control registers and begins the process of
filling the appropriate FIFO. The FIFO can refilled
automatically when it has been emptied by the
DAC. We defined another function, DAC_start, that
establishes a timer used to move a sound sample
from the FIFO to the DAC for playing. In Figure 2,
the addresses used for the control and data registers
are given in absolute form, as defined by the GBA
documentation, and the situation is that described
above: an audio data set that has been sampled at
8000 Hz. The timer in the GBA adds one to a 16 bit
counter every cycle, and sends a timer signal on
overflow. Thus, the register is set to a value of
0xffff-time, where time is the number of CPU
cycles between samples.

The low level engine is responsible for
controlling DAC and DMA settings. At a higher
level, logical operations such as play_sound() are
implemented, and there are functions set up for
audio mixing of up to eight channels:
link_channel(), channel_volume(), and so on.

Finally, there are functions that are called by the
AI system to speak particular phrases. These refer to
phrases symbolically, because sometimes there are
multiple phrases that mean the same thing. The
system selects the specific phrase to be used either

Figure 1 – Game Boy Advance audio channels. Hex
number on the left is the base address of the device
register.

Sound 1

Sound 2

Sound 3

Sound 4
Noise

Short 4bit DAC

Square wave

Square wave, sweep & env.

Direct sound A

Direct Sound B

Two full
D to A
Channels

 0x04000060

0x04000068

0x04000070

 0x04000078

0x040000A0

 0x040000A4

based on a random choice, using prior use
information, or based on the specific words in the
phrase and which have been successfully
understood by the player in the past.

4. THE AI SYSTEM - REWARDS AND PENALTIES

The artificial intelligence (AI) module of a
computer game is responsible for many key aspects
of the game’s function, including object collisions,
physics, object management generally, and game
play. In the case of I 'powahsin, the AI system is
also responsible for a rather complex scoring system
that is based on an educated apprehension of how
the language learning goals are being met.

There are two parts to the scoring system:
penalties and rewards. The reward system is
relatively simple: each phrase is assigned an initial
point value, and if a player succeeds at interpreting
a phrase, as indicated by successfully following the
instructions contained in the phrase, then they are
awarded that number of points. Each time the
phrase is successfully understood, a decreasing
number of points is awarded, but success is always
rewarded to some degree. The implementation uses
a usage count and score value for each phrase in the

game. The value of the reward is
points, where count is the number of times that the
phrase has been successfully understood and S is the
initial score assigned to the phrase. Scores are
assigned to phrases by native speakers according to
how difficult the words and sub-phrases are.

Penalties are assigned differently. Each word in
each recorded phrase is assigned a point value, and
the total points for a phrase starts out as the sum of
the words. Then points are added or removed for
combinations; commonly occurring combinations
increase the penalty, while rare ones may not, or
increase the penalty by a lesser amount. Words that
have been previously understood successfully have
a double penalty applied. Finally, each phrase
increases in penalty value as a function of the
number of times that the phrase has been used. If a
phrase has been used N times so far and has a basic
penalty cost of P points, then the penalty for failure
to understand (or cost to translate) is N*P points.

The higher penalty applies to phrases that have
been successfully understood in the past. So, if a
phrase has been understood 10 times but the player

fails in the 11th time, the penalty is 10*P, and the
phrase is still treated as one that has been
understood 10 times previously. You cannot
increase your score by starting the scoring process
over again.

The game AI will attempt to determine which
words and phrases are difficult for the player, and
can create a simple report for the instructor. In more
advanced versions of the game, the AI system will
test specific hypotheses (E.g. the ‘word “xyz” is not
understood by the player’) when it determines a
pattern in understanding through game play.

5. CONCLUSIONS

This is clearly preliminary work, and serves to
inform other researchers about content and
methodology while offering technical assistance in
the construction of other game-like tools for related
tasks. It will be a few years before any reliable
assessment can be made concerning the efficacy of
the use of the Game Boy to teach native languages It
is clear that the idea has a feasible implementation
at a reasonable cost; the question is ‘does it work?’
This question can be answered having the teacher
examine the results of courses and individual
student performances where the game was and was
not used. In the long term, the successful use of
these games should show up as increased success at
the language learning task, as compared to the
standard methods being used. In the final analysis,
the goal is not to replace other methods but to
supplement them.

The game in its current form can be downloaded
from the I 'powahsin web page at http://
www.ucalgary.ca/~jparker/I'powahsin/index.html.

S e
count 1–×

Figure 3 - A sample screen from the
I 'powahsin prototype.

The test.gba file can be played on any of the
publicly available emulators, or it can be written to
a flash memory card and played on an actual Game
Boy Advance.

ACKNOWLEDGMENTS

The authors thank Deifante Walters and Eric
Yeung for help with the first versions of the
software, and Bailey Parker for some of the initial
artwork.

REFERENCES

 [1] ARM Limited ARM7TDMI Technical Reference
Manual, Rev. 4, 2001 http://www.arm.com/pdfs/
DDI0210B_7TDMI_R4.pdf/m_arm7tdmi.htm

 [2] K. Becker and D. M. Jacobsen, "Games for
Learning: Are Schools Ready for What's to Come?"
in DiGRA 2005 2nd International Conference,
"Changing Views: Worlds in Play". Vancouver,
B.C.: Digital Games Research Association, 2005,
URL: http://pages.cpsc.ucalgary.ca/~becker/Main/
Papers/DiGRA-05-Study-Paper.pdf.

 [3] J. P. Gee, What video games have to teach us about
learning and literacy, 1st ed. New York: Palgrave
Macmillan, 2003, URL: http://www.loc.gov/catdir/
description/hol032/2002038153.html.

 [4] Jonathan S. Harbour, Programming the Game Boy
Advance: The Unofficial Guide, 2003. http://
www.jharbour.com

 [5] Alison McMahan, Immersion, Engagement, and
Presence - A Method for Analyzing 3D Video
Games, The Video Game Theory Reader, M. Wolf
& B. Perron (Eds.), Routledge, 2003.

 [6] J. R. Parker and S. Chan, Sound Synthesis for the
Web, Games and Virtual Reality, SIGGRAPH 2003,
San Diego, CA. July 28-30, 2003.

 [7] J.R. Parker and S. Chan, OceanQuest: A University
Based Serious Games Project, DiGRA 2005,
Vancouver, June 17-19, 2005.

 [8] Soloway. How the Nintendo Generation learns,
Communications of the ACM. September 1991,
Volume 34, Number 9. p. 23

 [9] K. Squire, Replaying History: Learning World
History through playing Civilization III,
Instructional Systems Technology Department,
School of Education: Indiana University, 2003, pp.
416 + appendicies, URL: http://
website.education.wisc.edu/kdsquire/
dissertation.html.

 [10] Chris Strickland, Audio Programming on the
GameBoy Advance Part 1, www.gamedev.net/
reference/programming/features/gbasound1/, 1999.

 [11] VisualHAM, http://visualham.console-dev.de/,
2005.

